
Java Coding
Syntax for Variables & Constants

Input, Output and Assignment

a complete Java program

data representations

From problem to program…

• The story so far...

Java
Source
Code

Java
bytecode

Machine
code

Problem Algorithm
Data/Memory
requirements

Remember: Data

requirements are

extracted from the

algorithm

Need Java Syntax for…

• Algorithm (in pseudo-code)
• Sequence, Decision & Repetition, of
• Data flow operations

• Input, Output & Assignment

• Data/Memory requirements
• Meaningfully named memory locations
• Restriction on data (data types)
• Variables or Constants & initial value

• Plus comments & methods!

Comments & White space

• Comments Syntax:
• // any text on remainder of current line
• /* any text across multiple lines */

• Examples:
• // Author: David.

// Date: Oct. 2002

• /*
This program
blah, blah,
blah

*/

• javadoc comments
• /** description followed by any text, include tags such @author & @version, until

*/

Comments & White space

• Java ignores line endings, blanks lines & white

space!

• Program can be written on a single line, one word

per line or (almost) however you want!

• Use blank lines & indentation (space or tab

characters) to layout as per program logical

structure

Layout program code for
ease of reading!

Identifiers

• User-defined names
• Used for variables, constants, methods, etc.
• Any sequence of letters, digits and the underscore

character only.
• First character may not be a digit!
• Upper and lower case are considered different (i.e. case

sensitive!)
• Cannot use Java reserved words

• i.e. words such as while, for, class, if, etc.

CS101 rule: Names must be meaningful!

Identifiers

• “Dog” is not the same identifier as “dog”

• Identifiers such as String, System, out, etc. are

not reserved words and could be used

• BUT doing so might make your program very

confusing since you are redefining commonly used

terms.

CS101 rule: Names must be meaningful!

Data Types

• For now, use only the following…

• Primitive
• int (for numeric integer, e.g. 5, -27, 0, 510…)

• double (for numeric real, e.g. 5.75, 3.0, -2.6…)

• char (for any character, e.g. A, a, B, b, 3, ?, &, …)

• boolean (for true / false only)

• Non-primitive
• String (for any sequence of zero or more characters

e.g. “CS101”, “A”, “Well done!”, …)

Declaring Variables

• Syntax:

• Type
• Any Java type

• Name (identifier)
• Convention:

first letter of embedded words capital, except first!

• Examples:
• int age; double area; long initialSpeed;
• char letterGrade; char lettergrade;
• boolean exists; CAUTION

Java is
case

sensitive!

type name;

Notice

semicolon

(missing it is

syntax

error!)

Declaring Variables

•Variable names cannot have spaces

• A name such as “speed of sound” or “sum of grades so far”
cannot be used.

•Resolve by

• replacing spaces with “_” (not normally used in Java) or

• removing spaces (which would make reading it difficult)

• capitalise first letter of each embedded word, except first

• E.g. “speedOfSound” & “sumOfGradesSoFar” CAUTION
Java is
case

sensitive!

Declaring Constants

• Syntax:

• Type
• Any Java type

• Name (identifier)
• Convention: all capital letters (& underscore!)

• Value (literal, variable, constant, expression)

• Examples:
• final int SPEEDOFLIGHT = 300;
• final float PI = 3.142;
• final String COMPANY = “Bilkent”;
• final char LETTER_GRADE = ‘A’;

Literal values
String use “…”

char use ‘.’

final type name = value;

Declaring Constants
• We may also declare constants as static,

• This requires them to be defined in the class, not the main method.

• Advantage:

• If a constant is not static, Java will allocate a memory for that constant in every object
of the class (i.e., one copy of the constant per object).

• If a constant is static, there will be only one copy of the constant for that class (i.e.,
one copy per class).

• If the constant has only one value, it should declared static

• If the constant might have different value for each object, for example the
creation time of the object, it should not be declared static

• Naming constants makes maintenance easier
• Which of these three alternatives would be better if we wished to update PI to

3.0

- PI = 3.142; & circumference = 2 * PI * radius;

- circumference = 2 * 3.142 * radius;

- circumference = 6.284 * radius;

Constant Declaration

Output (1)

• Syntax:

• where output is
• Literal value

eg. “The area is “, ‘?’, 12.5, …

• Named variable or constant
eg. area, userName, TAXRATE, …

• Expression
eg. 2 * PI * radius,

“The area is “ + area

System.out.println(output);

Value is output
exactly as is!

Value in named
memory location

is output

Resulting value of
expression is

output

Note use of + for string concatenation

Output (2)

• Use

To output the value & leave text cursor on current line.

System.out.print(output);

System.out.println(“Welcome to CS101”);

System.out.println(“The tax rate is “ + TAXRATE + ‘%’);

System.out.println(“Welcome to CS101”);

System.out.print(“The tax rate is “);

System.out.print(TAXRATE);

System.out.println(‘%’);

System.out.println();
Output blank line!

Output (3)

•How can we display double quotes as part of
output?

•Problem since they terminate string literal!

•Use escape sequence \”

•but then how about the back slash character?

•Again use \\

•Look at book for others

Formatted Output

• Use the printf method to specify how values should be formatted.

• printf lets you print this
Price per liter: 1.22

• Instead of this
Price per liter: 1.215962441314554

• This command displays the price with two digits after the decimal point:
System.out.printf("%.2f", price);

Formatted Output

• You can also specify a field width:
System.out.printf("%10.2f", price);

• This prints 10 characters
• Six spaces followed by the four characters 1.22

• This command
System.out.printf("Price per liter:%10.2f", price);

• Prints
Price per liter: 1.22

Formatted Output

Formatted Output

• You can print multiple values with a single call to the printf method.

• Example
System.out.printf("Quantity: %d Total: %10.2f",

quantity, total);

• Output explained:

Outline Java Program

• The CS101 console template…

import java.util.Scanner;

/** …description…

@author …yourname…

@version 1.00, date

*/

public class ClassName {

public static void main(String[] args) {

Scanner scan = new Scanner(System.in);

// constants

// variables

// program code

}

}

ClassName.java

In Java
program = class

Classname
Convention:
first letters capitalised

Filename & classname
MUST be the same.

Scanner class imported for you!

Header comment is in

javadoc format!

Imports must be before

this

Input

• Syntax:

• Examples

StringVariable = scan.next();

intVariable = scan.nextInt();

doubleVariable = scan.nextDouble();

userName = scan.next();

age = scan.nextInt();

salary = scan.nextDouble();

str = scan.nextLine();

• Standard from Java5.0 on
• Invalid input may give run-time error!
• Program must include:

• import java.util.Scanner;
• Scanner scan = new Scanner(System.in);

Variables
must be
declared

before use

Input

• Program waits for user to press ENTER (end of line)

• Then takes the user input and stores it in the specified variable.

• Scanner splits input stream up at whitespace boundaries by
default

• next() gets a word, and nextInt() may leave text on current line

• nextLine() gets rest of current line

• May use
• scan.useDelimiter(System.getProperty("line.separator"));

• To break on line rather than on whitespace boundaries

• Common problem:
• User enters Turkish values, but machine is in English locale for example,

23,75 vs. 23.75

Input

• Scanner class includes hasNext(), hasNextInt(), hasNextDouble(),
etc.

• Can’t use “scan.nextChar()” use “scan.nextLine().charAt(0)”
instead

• Problem of reading String after number,
• Eg. i = scan.nextInt(); s = scan.nextLine();

• Will usually give an empty String s!

• Add extra scan.nextLine(); inbetween so as to consume \n
character

• Can also use to read from string, files or url’s

• But may need exception handling, for example “throws
java.io.IOException” added to method (usually main)

Input Statement

Assignment

• Syntax:

• where expression is
• operand or
• operand operator operand

• &
• Operand is

• Literal value
• Named Variable or constant
• Result of method call
• Expression (can use brackets to disambiguate)!

• Operator is
• +, -, *, /, % (modulus, remainder after integer division)

resultVariable = expression;

Result of
expression must

be of suitable
type to put into
resultVariable!

… is assigned
the result of …

Assignment

• Examples

• What is the result of this?

• Evaluation rules
• Bracketed sub-expressions first

• Operator precedence (* / % before + -)

• Left to right

total = 0; x = y;

sum = firstNumber + secondNumber;

netPay = grossPay * (1 – TAX_RATE/100);

count = count + 1;

c = Math.sqrt(a * a + b * b);

4 + 2 / 3 – 1

… is assigned
the result of …

Assignment - compatibility

• d = i; // ok

• but i = d; // not ok!

• can force with i = (int) d; // typecast!

• Type compatibility
• Can put narrower types into wider ones

• Usually no danger of loss (eg. int into long or double)

• Going the other way is dangerous (serious loss of info.)

• Compiler issues error message.

• Can use type cast to force compiler to accept

• Useful when dividing two ints since result type is int not real!
• double = (double) int/int;

Self Check

Which of the following initializations are incorrect, and why?

1. int dollars = 100.0;

2. double balance = 100;

Answer: The first initialization is incorrect. The right hand side is a value of
type double, and it is not legal to initialize an int variable with a
double value. The second initialization is correct — an int value can
always be converted to a double.

• The CS101 console template…

import java.util.Scanner;

/** …description…

@author …yourname…

@version 1.00, date

*/

public class ClassName {

public static void main(String[] args) {

Scanner scan = new Scanner(System.in);

// constants

// variables

// program code

}

}

ClassName.java

In Java
program = class

Classname
Convention:
first letters capitalised

Filename & classname
MUST be the same.

CS101 console template

A Complete Example (1)

• Problem – find area & circumference…

• Algorithm

• Data requirements

1. Print welcome message

2. Ask for & get radius from user

3. Compute area as pi.radius.radius

4. Compute circumference as 2.pi.radius

5. Report area, circumference & radius

L radius - int

L area, circumference - double

PI – double, constant = 3.142

A Complete Example (2)

import java.util.Scanner;

/** …description…

@author …yourname…

@version 1.00, 2005/10/07

*/

public class AreaCircum {

public static void main(String[] args) {

// constants

// variables

// 1. Print welcome message

// 2. Ask for & get radius from user

// 3. Compute area as pi.radius.radius

// 4. Compute circumference as 2.pi.radius

// 5. Report area, circumference & radius

}

}

AreaCircum.java

A Complete Example (3)

import java.util.Scanner;

/**

* AreaCircum - computes area & circum of circle given radius

*

* @author David

* @version 1.00, 2005/10/07

*/

public class AreaCircum

{

public static void main(String[] args)

{

// constants

final double PI = 3.142;

// variables

int radius;

double area;

double circumference;

Header has been
edited to include
program
description &
author name

AreaCircum.java

A Complete Example (3)

Scanner scan = new Scanner(System.in);

// 1. Print welcome message

System.out.println("Welcome to area circumference finder.");

// 2. Ask for & get radius from user

System.out.print("Please enter the radius: ");

radius = scan.nextInt();

// 3. Compute area as pi.radius.radius

area = PI * radius * radius;

// 4. Compute circumference as 2.pi.radius

circumference = 2 * PI * radius;

// 5. Report area, circumference & radius

System.out.print("The area of a circle of radius ");

System.out.print(radius);

System.out.print(" is ");

System.out.println(area);

System.out.print("and its circumference is ");

System.out.print(circumference);

System.out.println();

}

} // end of class AreaCircum

Template line
required for
Keyboard input.

Steps 2 & 5
expanded as per
original algorithm.

Compile & Run…

Um… why the weird
circumference

value?

Rounding Errors

• Rounding errors occur when an exact representation of a floating-point number
is not possible.

• Floating-point numbers have limited precision. Not every value can be
represented precisely, and roundoff errors can occur.

• Example:
double f = 4.35;

System.out.println(100 * f); // Prints 434.99999999999994

• Use double type in most cases

Testing…

• It compiled & ran, but…is it correct?

• How can you tell?
• Enter input & check results it outputs

(e.g. radius 5  area 78.55 & circumference 31.42)

are these actually the right answers?

• Really need more input/output sets
• what input values should we use?
• & how many do we need?

• Thinking about testing during design
can help produce better programs!

Testing…

• Trying every possible value for the input is a waste of time

• Choose some key values
• a couple of normal cases, e.g. 5 & 10
• any special cases, e.g. 0
• unusual / exceptional cases, e.g. -2 & 5.25
• really bad cases, e.g. xyz

• Don’t assume the user will give you sensible values

• What you do in such exceptional cases is a matter for the
customer/software producer to decide

• You may just leave it to generate a run-time error (exception) or
• Handle it and output a nice user-friendly error message

Edsgar Djkstra (Dutch computer scientist. Turing award winner 1972, died
2002):
“Program testing can be used to show the presence of bugs, but never to
show their absence”

Data & DATA Types

Data Types

• For now, use only the following…

• Primitive
• int (for numeric integer, e.g. 5, -27, 0, 510…)

• double (for numeric real, e.g. 5.75, 3.0, -2.6…)

• char (for any character, e.g. A, a, B, b, 3, ?, &, …)

• boolean (for true / false only)

• Non-primitive
• String (for any sequence of zero or more characters

e.g. “CS101”, “A”, “Well done!”, …)

Numeric representations

Number bases

• 58310

5.102 + 8.101 + 3.100

• 4178

4.82 + 1.81 + 7.80

• 1102

1.22 + 1.21 + 0.20

Base 2 - binary

• digits 0 & 1

• 2n values

• 0  (2n – 1)

000
001
010
011
100
101
110
111

00
01
10
11

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0
1

Characters…

• Coding

• Size…?

• ASCII
• 8 bit

• 128 characters,

• English only!

• UNICODE
• 16 bit

• first 128 characters
same as ASCII

• All languages!

0000 — ‘a’
0001 — ‘b’
0010 — ‘c’
0011 — ‘d’
0100 — ‘+’
0101 — ‘-’
0110 — ‘*’
0111 — ‘/’

1000 — ‘0’
1001 — ‘1’
1010 — ‘2’
1011 — ‘3’
1100 — ‘ ’
1101 — ‘x’
1110 — ‘y’
1111 — ‘z’

‘A’.. ‘Z’  26
‘a’.. ‘z’  26
‘0’.. ‘9’  10
punc.  ??

62

26 = 64
27 = 128
28 = 256

Standard Codes

Data Types

• Primitive
• byte, short, int, long (numeric integer)

• float, double (numeric real)

• char - any character, e.g. A, a, B, b, 3, ?, &, …
(Java uses ISO Unicode standard, 16 bit/char)

• boolean - true / false

• Non-primitive
• String - any sequence of zero or more characters
• enum – an ordered set of user-defined values

• anything & everything else!
(we will come to these shortly)

Number Types

• Every value in Java is either:
• a reference to an object

• one of the eight primitive types

• Java has eight primitive types:
• four integer types

• two floating-point types

• two other

Primitive Numeric Types

Type

byte
short
int
long

float
double

Storage

8 bits
16 bits
32 bits
64 bits

32 bits
64 bits

Min Value

-128
-32,768
-2,147,483,648
-9 x 1018

 3.4 x 10  38 7 significant digits
 1.7 x 10  308 15 significant digits

Max Value

127
32,767
2,147,483,647
9 x 1018

integer

real

Primitive Types

Primitive Numeric Types

• Integer types stored as binary (base two) values

• Actually 2’s complement… why?

• So that addition doesn't need to have any special logic for dealing with
negative numbers

• Say you have two numbers, 2 and -1

• Intuitive way of representing numbers, would be 0010 and 1001

• In the two's complement way, they are 0010 and 1111

• Two's complement addition is very simple

• Add numbers normally and any carry bit at the end is discarded

• 0010 + 1111 =10001 = 0001 (discard the carry)

• 0001 is 1, which is what we expected

• But in intuitive method, adding is more complicated:

• 0010 + 1001 = 1011, which is -3

Misc…

• Why so many numeric types?
• memory, processing time, error, …

• Error in reals?

• Typecasting
• int into double, but not double into int!

• Overflow/underflow
• What happens if add one to maxint or subtract one from –maxint?

• Division by zero

• Why not use String for everything?

Overflow

• Generally use an int for integers

• Overflow occurs when
• The result of a computation exceeds the range for the number type

• Example
int n = 1000000;

System.out.println(n * n); // Prints –727379968, which is clearly wrong

• 1012 is larger that the largest int

• The result is truncated to fit in an int

• No warning is given

• Solution: use long instead

• Generally do not have overflow with the double data type

String Type

• A string is a sequence of characters.

• You can declare variables that hold strings
String name = "Harry";

• A string variable is a variable that can hold a string

• String literals are character sequences enclosed in quotes

• A string literal denotes a particular string
"Harry"

String Type

• String length is the number of characters in the string
• The length of "Harry" is 5

• The length method yields the number of characters in a string
• int n = name.length();

• A string of length 0 is called the empty string
• Contains no characters

• Is written as ""

Concatenation

• Concatenating strings means to put them together to form a longer string

• Use the + operator

• Example:
String fName = "Harry”;

String lName = "Morgan”;

String name = fName + lName;

• Result:
"HarryMorgan"

• To separate the first and last name with a space
String name = fName + " " + lName;

• Results in
"Harry Morgan"

Concatenation

• If one of the arguments of the + operator is a string
• The other is forced to become to a string:

• Both strings are then concatenated

• Example
String jobTitle = "Agent”;

int employeeId = 7;

String bond = jobTitle + employeeId;

• Result
"Agent7"

Concatenation in Print Statements

• Useful to reduce the number of System.out.print instructions
System.out.print("The total is ");

System.out.println(total);

versus
System.out.println("The total is " + total);

String Input

• Use the next method of the Scanner class to read a string containing a single
word.
System.out.print("Please enter your name: ");

String name = in.next();

• Only one word is read.

• Use a second call to in.next to get a second word.

Escape Sequences

• To include a quotation mark in a literal string, precede it with a backslash (\)
"He said \"Hello\""

• Indicates that the quotation mark that follows should be a part of the string and
not mark the end of the string

• Called an escape sequence

• To include a backslash in a string, use the escape sequence \\
"C:\\Temp\\Secret.txt"

• A newline character is denoted with the escape sequence \n

• A newline character is often added to the end of the format string when using
System.out.printf:
System.out.printf("Price: %10.2f\n", price);

Strings and Characters

• A string is a sequences of Unicode characters.

• A character is a value of the type char.
• Characters have numeric values

• Character literals are delimited by single quotes.
• 'H' is a character. It is a value of type char

• Don't confuse them with strings
• "H" is a string containing a single character. It is a value of type String.

Strings and Characters

• String positions are counted starting with 0.

• The position number of the last character is always one less than the length of
the string.

• The last character of the string "Harry" is at position 4

• The charAt method returns a char value from a string

• The example
String name = "Harry”;

char start = name.charAt(0);

char last = name.charAt(4);

• Sets start to the value 'H' and last to the value 'y'.

Substrings

• Use the substring method to extract a part of a string.

• The method call str.substring(start, pastEnd)
• returns a string that is made up of the characters in the string str,

• starting at position start, and

• containing all characters up to, but not including, the position pastEnd.

• Example:
String greeting = "Hello, World!”;

String sub = greeting.substring(0, 5); // sub is "Hello”

Substrings

• To extract "World"
String sub2 = greeting.substring(7, 12);

• Substring length is “past the end” - start

Substrings

• If you omit the end position when calling the substring method, then all characters
from the starting position to the end of the string are copied.

• Example
String tail = greeting.substring(7); // Copies all characters from position 7 on

• Result
• Sets tail to the string "World!".

Substrings

• To make a string of one character, taken from the start of first
first.substring(0, 1)

String Operations

Arithmetic Operators

• Four basic operators:
• addition: +
• subtraction: -
• multiplication: *
• division: /

• Expression: combination of variables, literals, operators, and/or method calls
(a + b) / 2

• Parentheses control the order of the computation
(a + b) / 2

• Multiplication and division have a higher precedence than addition and subtraction
a + b / 2

• Mixing integers and floating-point values in an arithmetic expression yields a
floating-point value

• 7 + 4.0 is the floating-point value 11.0

Increment and Decrement

• The ++ operator adds 1 to a variable (increments)
counter++; // Adds 1 to the variable counter

• The -- operator subtracts 1 from the variable (decrements)
counter--; // Subtracts 1 from counter

Figure 1 Incrementing a Variable

Integer Division and Remainder

• Division works as you would expect, as long as at least one of the numbers is a floating-
point number.

• Example: all of the following evaluate to 1.75
7.0 / 4.0

7 / 4.0

7.0 / 4

• If both numbers are integers, the result is an integer. The remainder is discarded
• 7 / 4 evaluates to 1

• Use % operator to get the remainder with (pronounced “modulus”, “modulo”, or “mod”)
• 7 % 4 is 3

Integer Division and Remainder

• To determine the value in dollars and cents of 1729 pennies
• Obtain the dollars through an integer division by 100

int dollars = pennies / 100; // Sets dollars to 17

• To obtain the remainder, use the % operator

int cents = pennies % 100; // Sets cents to 29

• Integer division and the % operator yield the dollar and cent values of a
piggybank full of pennies.

Integer Division and Remainder

Powers and Roots

• Math class contains methods sqrt and pow to compute square roots and
powers

• To take the square root of a number, use Math.sqrt; for example,
Math.sqrt(x)

• To compute xn, you write Math.pow(x, n)
• To compute x2 it is significantly more efficient simply to compute x * x

• In Java,

can be represented as
b * Math.pow(1 + r / 100, n)

Mathematical Methods

Converting Floating-Point Numbers to Integers - Cast

• The compiler disallows the assignment of a double to an int because it is
potentially dangerous

• The fractional part is lost

• The magnitude may be too large

• This is an error

double balance = total + tax;

int dollars = balance; // Error: Cannot assign double to int

• Use the cast operator (int) to convert a convert floating-point value to an
integer.

double balance = total + tax;

int dollars = (int) balance;

• Cast discards fractional part

• You use a cast (typeName) to convert a value to a different type.

Converting Floating-Point Numbers to Integers - Rounding

• Math.round converts a floating-point number to nearest integer:
long rounded = Math.round(balance);

• If balance is 13.75, then rounded is set to 14.

